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What do we want to obtain with 
biomechanical studies?
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Calculate the stress in the tissues

Evaluate the implant effect on joint 
kinematics

Anticipate the tissue differentiation 
due to the mechanical loading

We have previously determined the “boundary conditions” (joint forces, kinematics) acting on our system of interest (forearm, femur, shoulder, …). We can 
use this information to calculate the corresponding stress or strain inside the different tissues of the joint. We are then at one level deeper in our 
biomechanical description and we can use this new knowledge to evaluate the biomechanical impact of an implant on the surrounding tissues. If an 
evolution law of the tissue mechanical properties is developed in function of a mechanical stimulus, we would then also be able to anticipate the tissue 
differentiation with respect to this mechanical stimulus.



Biomechanics at the tissue level

i) Continuum mechanics (conservation laws)

ii) Constitutive laws (linear, non-linear)

iii) Tissue characterisation
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Like in any field of physics, in the new description of mechanics at the continuum level, conservation laws have to be established.



Biological tissues are stressed and 
deformed when a force or moment is 
applied
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So far, we have considered the tissues forming the musculoskeletal system as rigid. Forces and moments are applied to these structures and if not in a 
static situation, their effects are to put them into linear/angular motions (studied through kinematics). In fact, these structures are deformable. Tissues 
such as ligaments, tendons, cartilage, meniscus, skin are highly deformable, while bone is less deformable. These deformations play an important role in 
the biomechanical aspects and we must therefore consider biological tissues as deformable. The force/moment will then also induce deformations in the 
tissues, so the concepts of the stress and strain have to be introduced.
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The mathematical “nature” of a stress 
and a strain is a second order tensor

Wikipedia
e1

e2

e3

: stress tensor components

Imagine that a body is virtually cut in two pieces. The second part exerts a force p on the surface ∂w of the first part at a certain material point k. The 
surface ∂w is represented by its normal vector n. The force p can be understood as the cohesion force which keeps the body in one part. We call the 
cohesion force p: the stress vector. We can repeat the cutting at the material point k with a different orientation, we will then obtain another surface ∂w’. 
The corresponding stress vector p’ will then be different from p. The stress vector across any imaginary surface depends then on the orientation of that 
surface. Cauchy was the first one to propose that the stress vector p across a surface will always be a linear function of the surface's normal vector n. So 
p=σn.
We can call the “object” σ stress and its mathematical “nature” is then revealed as a second order tensor (by definition a second order tensor is a geometric 
object that linearly transforms a vector (also called first order tensor) into a vector. The components of a second order tensor is expressed in a 3x3 matrix 
which values depend on the chosen coordinate system. By similitude, the strain is also a second order tensor.
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Conservation of the linear 
momentum

There are two kinds of forces to be considered in the conservation of the linear momentum: the forces of volume and the forces of contact. 
The left hand-side of the equation represents the force of inertia by unit of reference volume. It is a force of volume. b is another force of volume defined 
by unit of reference volume. Typically, b is the gravity force. p is a contact force that we just have called stress vector in the previous slide. As mentioned 
before, this stress vector is assumed to depend only linearly on the unit normal of the surface: p = p(x,t,n(x)). The Cauchy theorem allows us to write: 
p(x,t,n(x)) = σ(x,t) n(x) where σ has just been called the stress tensor.
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Conservation of the 
linear momentum (surface to volume integration)

σ

σ

σ σ

We replace “p(x,t,n(x))” by “σ(x,t) n(x)” and with the help of the divergence theorem, we can transform the surface integral into a volume integral.
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Conservation of the 
linear momentum (localisation)

σ

σ

The principle of localisation in a continuum medium states that if the integral of a function continue on Ω vanishes in any integration sub-domain ω 
included in Ω, so this function (the integrant) is null in all the Ω domain.
The conservation of the linear momentum (which is indeed a rewriting of the second Newton law ma = ∑Fext, but for a continuum medium) in continuum 
mechanics imposes then to define an ad hoc relationship between the stress and the strain (called constitutive law). This constitutive law is specific to the 
material studied.
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Conservation of the angular 
momentum: graphical interpretation

e1

e2

σ11-σ11

σ22

-σ22

σ21

σ12

The satisfaction of the angular conservation momentum imposes: 
σ = σT 

Let’s imagine that we have a body at equilibrium (linear and angular momenta are trivial). If we virtually isolate an infinitesimal part of this body, we can 
evaluate the stress state situation in this part and make the intuitive conclusion that σ12 = σ21. In other word, this observation suggests that the stress (and 
correspondingly strain) tensor should be symmetrical.
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Conservation of the 
angular momentum

To get a formal demonstration of the symmetry of the stress tensor imposed by the conservation of the angular momentum, we extensively write the 
equation of this conservation law in the framework of continuum mechanics.
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Conservation of the 
angular momentum (math development)

We develop each part of the equation in components. To express the vector product in components, we use the permutation symbol εijk.
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Conservation of the 
angular momentum (math development)

dV

By using the divergence theorem, we transform the vector product expressed with a surface integral in a volume integral.
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Conservation of the 
angular momentum (math development)

We can now express the conservation of the angular momentum in components form and we see that we have basically two parts. 
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Conservation of the 
angular momentum (math development)

The first part of the equation is nothing else than the equation for the conservation of linear momentum which is trivial. To satisfy the conservation of the 
angular momentum, the term into bracket of the second part must be equal to 0. This is generally obtained if the stress tensor is symmetric. As for the 
conservation of the linear momentum, the principle of localisation allows us to consider only the integrant.



Biological tissues are stressed and 
deformed when a force or moment is 
applied
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σ = σT
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Unlike the equations of motion proposed by Newton which considers only external forces/moments to the defined system, in deformable materials (which 
are considered as a continuum here), internal forces/moments (represented by stress) are part of the conservation of the linear and angular momenta. 
These conservation laws are called the Cauchy momentum equations.



Biomechanics at the tissue level

i) Continuum mechanics (conservation laws)

ii) Constitutive laws (linear, non-linear)

iii) Tissue characterisation
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One important aspect of biomechanics is 
then to characterise tissues through 
constitutive laws
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Conservation laws (linear or angular momenta, mass conservation, energy and second law of thermodynamics) are general and in order to characterise the 
mechanical behaviour of particular materials, constitutive laws have to be postulated. The postulation of a constitutive law is then an ad hoc way to 
describe a particular (mechanical) behaviour which cannot be taken into consideration by the general conservation laws.



Hooke’s Law in 1D
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€ 

σ =Eε
e1

e2

e3

!!! = !!!!!

E: Young’s modulus
ε

σ

The stress/strain curve presented so far, corresponds to experimental test performed in a one dimension. This is a shortcut as the tested samples have 
obviously a 3D structure. To be correct, the relation between the stress and the strain should then also indicate with respect to which axis the force was 
applied. In the example of this slide, the indication is given by mentioning the (second) indice 3 for the stress and the strain referring then that the force 
was applied in the direction of the axis e3. As a stress is by definition a force divided by a surface, we need to precise on which surface we consider that 
the force is applied. The first indices describes the direction of the normal to the plane on which the force acts. Thus, σ12 indicates a stress component 
acting in 2-direction on1-plane. When both the indices are same, it means the stress component is along the normal to the plane on which it acts. It is 
called the normal stress component. Thus, σ11, σ22 and σ33 are the normal stress components. When the two indices are different, it means the direction of 
the component is within the plane. Such a component is called the shear stress component. Linear relationship between the stress and strain is called 
Hooke’s law.



Hooke law in 3D (symmetries of the stiffness tensor C)
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General linear relationship between the stress and the strain (81 parameters)

Symmetry of the stress and corresponding strain tensors (36 parameters)

σij = Cijkl εkl

Cijkl -> Cαβ

When formalising the linear relationship between the stress (second order tensor) and strain (second order tensor), we obtain that the elastic constants 
(“proportional factors”) are represented by a fourth order tensor (3x3x3x3) meaning that in the general form, it involves 81 parameters. The stiffness 
tensor is a fourth order tensor.
The symmetry of the stress tensor (σij = σji) and the generalised Hooke's laws (σij = Cijkl εkl) implies that Cijkl = Cjikl. Similarly, the symmetry of the strain 
tensor implies that Cijkl = Cijlk. These symmetries are called the minor symmetries of the stiffness tensor (C). This reduces the number of elastic constants 
from 81 to 36.



Matrix notation of Hooke’s law (Voigt 
notation)

20

As the stress and strain tensors are symmetric, on the 9 components composing the 3x3 matrix form of these tensors, only 6 components are 
independent. It has then be proposed to represent these second order tensors, in a vector form of 6 components. To be coherent with the definition of the 
Hooke’s law, a factor 2 must be used for the off-diagonal component of the strain in the transformation from two indices notation to a one indice notation. 
Accordingly, the stiffness tensor is represented in a 6x6 matrix.



Hooke law in 3D (symmetries of the stiffness tensor C)
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Stress derived from a strain energy function U (21 parameters)

Cαβ -> Cβα
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Finally, the stress–strain relation can be derived from a strain energy density functional U. The arbitrariness of the order of differentiation implies that Cijkl 
= Cklij. These are called the major symmetries of the stiffness tensor. This reduces the number of elastic constants from 36 to 21. The major and minor 
symmetries indicate that the stiffness tensor has at maximum only 21 independent components.



Hooke law in 3D (material symmetry)
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Orthotropic
(3 plans)

Isotropic
(no symmetry)

Nucleus
pulposus

Transversely isotropic
(1 direction perpendicular to a plan)

e1

e2

e3

Thanks to their structure, musculoskeletal tissues may present specific symmetries with respect to their mechanical behaviour. In particular for the linear 
elastic situation, these material symmetries (called anisotropy) or absence of symmetries (called isotropy) will affect the number of independent parameters 
in the stiffness tensor. In other words, the mechanical properties of a material also obviously depend on its intrinsic symmetries.



Hooke law in 3D (material symmetry)
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Isotropic material -> isotropic stiffness tensor (2 parameters):

Cijkl = λδijδkl + μ(δikδjl + δilδjk) δ: Kronecker symbol

λ and μ are 2 scalars called Lamé constants
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The class of materials which mechanical properties do not depend on the direction is said to be isotropic. This concept of isotropy is used constantly in 
(bio)mechanics as a simplifying assumption. If an elastic solid is considered as isotropic, then its stiffness tensor must be isotropic. The values of the 
elastic parameters do not vary under any applied orthogonal transformation. An isotropic tensor of rank 4 can then reduce to the proposed form written in 
the slide. Only two independent parameters are necessary to fully characterise the linear mechanical behaviour of an isotropic material.



Tensorial formulation for linear elastic 
isotropic material 

24

σ = λ(trε)I+ 2με
trε = ε11+ ε22+ ε33 
I : tensor identity

link with “usual” E (Young’s modulus) 
σ33 = Eε33?

We can obtain a direct tensor notation for an isotropic elastic material with the Lamé constants (λ and μ). Different materials considered as linear elastic 
isotropic will then have different values for the constants λ and μ. However, in linear elasticity we may use other (well-known) constants such as E the 
Young’s modulus (also called elastic modulus), ν the Poisson ratio, or even k the bulk modulus (and G the shear modulus which is equivalent to μ).



Hooke law in 3D (material symmetry -> isotropy)
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Voigt notation (3) -> 
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The general formulation of Hooke law in 3D using the Young’s modulus and the Poisson ratio takes a simpler form in the strain-stress representation (also 
called compliance form) and the proportional parameters in this representation formed what is called a compliance matrix. A straightforward tensorial 
formulation can be obtained from which the index notation is derived. We can then see that in an experimental test where the force is acting in the e3 
direction perpendicular to the surface given by the normal co-linear to e3 and if no lateral constraint is imposed on the sample (-> σ11 and σ22 are trivial), 
we obtained the relationship σ33= Eε33.



Relation between the different isotropic 
elastic linear parameters
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The stress-strain relationship of Hooke’s law (also called stiffness form) using E and ν is less elegant. As there are only 2 independent parameters needed 
to describe the linear elastic behaviour of an isotropic material, relationships should exist between the different sets of two parameters. The relationships 
between the two Lamé constants (λ, μ) and the set (E, ν) is easily obtained. From a conceptual point of view, the choice of the two independent parameters 
is completely open and depends on the experimental data available or the convenience of one description over the others. 



Relation between the different isotropic elastic linear parameters
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Tissue mechanics, Cowin, 2007



Hooke law in 3D (material symmetry)
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Transverse isotropy
(1 direction perpendicular to a plan)

Orthotropy
(3 plans)

Isotropy
(no symmetry)

Nucleus
pulposus

e1

e2

e3

A transversely isotropic material is symmetric with respect to a rotation about an axis of symmetry (e3 in the given example of the tendon here). 



Hooke law in 3D (material symmetries -> 
transversely isotropic)
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Ep, νp: Young modulus and Poisson ratio in the plane of isotropy
Et, νt: Young modulus and Poisson ratio in the transverse direction (axis of symmetry)
Gtp: shear modulus in the plane of isotropy

As an example for a transversely isotropic material, if e3 is the axis of symmetry (we call this axis “transverse”), Hooke's law in compliance form can be 
expressed as shown on this slide. There are 5 independent parameters needed to fully characterise the mechanical behaviour of a transverse isotropic 
linear elastic material.



Material symmetries of different tissues
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i) Isotropic -> cartilage ???

ii) Transverse isotropic -> ligament, tendon, bone?

iii) Orthotropic -> bone?

As previously mentioned, considering a material as isotropic is a convenient way to simplify the mechanical description as it will require less experiments 
to obtain the value of the parameters. Some tissues clearly do not show an isotropic mechanical behaviour so this approximation may induce an imprecise 
description leading to a false interpretation of the obtained mechanical description. The “art” of the (bio)mechanician is then to evaluate when certain 
approximations can be considered or not as acceptable.



Material symmetries of different tissues
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sagittal view tendon  force

femora-patella contact force



One important aspect of biomechanics is 
then to characterise tissues through 
constitutive laws
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There is often a confusion between non-linear elastic behaviour and large deformation. While in general, a material submitted to a large deformation will 
display a non-linear stress-strain relationship, we can find materials presenting this non-linear behaviour already at low strain or inversely some materials 
may present a linear elastic behaviour at high strain.



Biomechanics at the tissue level

i) Continuum mechanics (conservation laws)

ii) Constitutive laws (linear, non-linear)

iii) Tissue characterisation
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